Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.197
Filtrar
1.
Eur J Pharmacol ; 971: 176525, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561101

RESUMO

Depression is a debilitating mental disease that negatively impacts individuals' lives and society. Novel hypotheses have been recently proposed to improve our understanding of depression pathogenesis. Impaired neuroplasticity and upregulated neuro-inflammation add-on to the disturbance in monoamine neurotransmitters and therefore require novel anti-depressants to target them simultaneously. Recent reports demonstrate the antidepressant effect of the anti-diabetic drug liraglutide. Similarly, the natural flavonoid naringenin has shown both anti-diabetic and anti-depressant effects. However, the neuro-pharmacological mechanisms underlying their actions remain understudied. The study aims to evaluate the antidepressant effects and neuroprotective mechanisms of liraglutide, naringenin or a combination of both. Depression was induced in mice by administering dexamethasone (32 mcg/kg) for seven consecutive days. Liraglutide (200 mcg/kg), naringenin (50 mg/kg) and a combination of both were administered either simultaneously or after induction of depression for twenty-eight days. Behavioral and molecular assays were used to assess the progression of depressive symptoms and biomarkers. Liraglutide and naringenin alone or in combination alleviated the depressive behavior in mice, manifested by decrease in anxiety, anhedonia, and despair. Mechanistically, liraglutide and naringenin improved neurogenesis, decreased neuroinflammation and comparably restored the monoamines levels to that of the reference drug escitalopram. The drugs protected mice from developing depression when given simultaneously with dexamethasone. Collectively, the results highlight the usability of liraglutide and naringenin in the treatment of depression in mice and emphasize the different pathways that contribute to the pathogenesis of depression.


Assuntos
Depressão , Flavanonas , Liraglutida , Camundongos , Animais , Depressão/metabolismo , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Inflamação/tratamento farmacológico , Neurogênese , Dexametasona/farmacologia
2.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612466

RESUMO

Type 2 diabetes mellitus (T2DM) is marked by persistent hyperglycemia, insulin resistance, and pancreatic ß-cell dysfunction, imposing substantial health burdens and elevating the risk of systemic complications and cardiovascular diseases. While the pathogenesis of diabetes remains elusive, a cyclical relationship between insulin resistance and inflammation is acknowledged, wherein inflammation exacerbates insulin resistance, perpetuating a deleterious cycle. Consequently, anti-inflammatory interventions offer a therapeutic avenue for T2DM management. In this study, a herb called Baikal skullcap, renowned for its repertoire of bioactive compounds with anti-inflammatory potential, is posited as a promising source for novel T2DM therapeutic strategies. Our study probed the anti-diabetic properties of compounds from Baikal skullcap via network pharmacology, molecular docking, and cellular assays, concentrating on their dual modulatory effects on diabetes through Protein Tyrosine Phosphatase 1B (PTP1B) enzyme inhibition and anti-inflammatory actions. We identified the major compounds in Baikal skullcap using liquid chromatography-mass spectrometry (LC-MS), highlighting six flavonoids, including the well-studied baicalein, as potent inhibitors of PTP1B. Furthermore, cellular experiments revealed that baicalin and baicalein exhibited enhanced anti-inflammatory responses compared to the active constituents of licorice, a known anti-inflammatory agent in TCM. Our findings confirmed that baicalin and baicalein mitigate diabetes via two distinct pathways: PTP1B inhibition and anti-inflammatory effects. Additionally, we have identified six flavonoid molecules with substantial potential for drug development, thereby augmenting the T2DM pharmacotherapeutic arsenal and promoting the integration of herb-derived treatments into modern pharmacology.


Assuntos
Diabetes Mellitus Tipo 2 , Flavanonas , Resistência à Insulina , Scutellaria baicalensis , Diabetes Mellitus Tipo 2/tratamento farmacológico , 60705 , Cromatografia Líquida , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Flavonoides/farmacologia , Inflamação , Anti-Inflamatórios/farmacologia
3.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612578

RESUMO

Ultraviolet radiation (UVR) has various effects on human cells and tissues, which can lead to a variety of skin diseases and cause inconvenience to people's lives. Among them, solar dermatitis is one of the important risk factors for malignant melanoma, so prevention and treatment of solar dermatitis is very necessary. Additionally, liquiritin (LQ) has anti-inflammatory effects. In this study, we aimed to evaluate the anti-inflammatory and pro-wound healing effects of liquiritin carbomer gel cold paste (LQ-CG-CP) in vitro and in vivo. The results of MTT experiments showed no cytotoxicity of LQ at concentrations of 40 µg/mL and below and cell damage at UVB irradiation doses above 60 mJ/cm2. Moreover, LQ can promote cell migration. ELISA results also showed that LQ inhibited the elevation of the inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) after UVB irradiation. In the mouse model of solar dermatitis, 2% LQ-CG-CP showed the best therapeutic efficacy for wound healing and relief of itching compared to MEIBAO moist burn moisturizer (MEBO). What is more, the results of skin histopathological examination show that LQ-CG-CP promotes re-epithelialization, shrinks wounds, and promotes collagen production, thus promoting wound healing. Simultaneously, LQ-CG-CP reduced TNF-α, IL-1ß, and IL-6 expression. In addition, LQ-CG-CP was not observed to cause histopathological changes and blood biochemical abnormalities in mice. Overall, LQ-CG-CP has great potential for the treatment of solar dermatitis.


Assuntos
Resinas Acrílicas , Dermatite , Flavanonas , Glucosídeos , Queimadura Solar , Animais , Camundongos , Humanos , Raios Ultravioleta , Interleucina-6 , Fator de Necrose Tumoral alfa , Cicatrização , Interleucina-1beta , Anti-Inflamatórios
4.
Nutrients ; 16(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38613124

RESUMO

Eriocitrin, a flavanone found in peppermint and citrus fruits, is known to possess many physiological activities. However, the anti-angiogenic effects of eriocitrin are yet to be fully elucidated. Therefore, the objective of this research was to explore the anti-angiogenic effects of eriocitrin both in vitro and in vivo as well as its underlying mechanism. Anti-angiogenic effects of eriocitrin were evaluated utilizing in vitro models of angiogenesis, including inhibition of tube formation, and induction of apoptosis in human umbilical vein endothelial cells (HUVECs). A chorioallantoic membrane (CAM) assay in chick embryos was also performed to evaluate the in vivo effects of eriocitrin on angiogenesis. Results showed significant eriocitrin effects on proliferation, tube formation, migration, and apoptosis in HUVECs. Furthermore, in vivo analysis revealed that eriocitrin significantly suppressed the formation of new blood vessels. In particular, it regulated MAPK/ERK signaling pathway and VEGFR2, inhibited the downstream PI3K/AKT/mTOR signaling pathway, and activated apoptosis signals such as caspase cascades. In HUVECs, the expression of matrix metalloproteinases (MMP-2 and MMP-9) exhibited an inhibitory effect on angiogenesis through the suppression of the signaling pathway. Therefore, eriocitrin presents potential for development into an antiangiogenic therapeutic agent.


Assuntos
Flavanonas , Fosfatidilinositol 3-Quinases , Embrião de Galinha , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt , 60489 , Células Endoteliais , Transdução de Sinais , Serina-Treonina Quinases TOR , Inibidores da Angiogênese/farmacologia
5.
Exp Cell Res ; 437(2): 114028, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582338

RESUMO

Acute liver injury (ALI) refers to the damage to the liver cells of patients due to drugs, food, and diseases. In this work, we used a network pharmacology approach to analyze the relevant targets and pathways of the active ingredients in Citri Reticulatae Pericarpium (CRP) for the treatment of ALI and conducted systematic validation through in vivo and in vitro experiments. The network pharmacologic results predicted that naringenin (NIN) was the main active component of CRP in the treatment of ALI. GO functional annotation and KEGG pathway enrichment showed that its mechanism may be related to the regulation of PPARA signaling pathway, PPARG signaling pathway, AKT1 signaling pathway, MAPK3 signaling pathway and other signaling pathways. The results of in vivo experiments showed that (NIN) could reduce the liver lesions, liver adipose lesions, hepatocyte injury and apoptosis in mice with APAP-induced ALI, and reduce the oxidative stress damage of mouse liver cells and the inflammation-related factors to regulate ALI. In vitro experiments showed that NIN could inhibit the proliferation, oxidative stress and inflammation of APAP-induced LO2 cells, promote APAP-induced apoptosis of LO2 cells, and regulate the expression of apoptotic genes in acute liver injury. Further studies showed that NIN inhibited APAP-induced ALI mainly by regulating the PPARA-dependent signaling pathway. In conclusion, this study provides a preliminary theoretical basis for the screening of active compounds in CRP for the prevention and treatment of ALI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Flavanonas , Fígado , Humanos , Animais , Camundongos , Fígado/metabolismo , Transdução de Sinais , Hepatócitos/metabolismo , Inflamação/metabolismo , Estresse Oxidativo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
6.
Neurotox Res ; 42(2): 23, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578482

RESUMO

Alzheimer's disease (AD) involves a neurodegenerative process that has not yet been prevented, reversed, or stopped. Continuing with the search for natural pharmacological treatments, flavonoids are a family of compounds with proven neuroprotective effects and multi-targeting behavior. The American genus Dalea L. (Fabaceae) is an important source of bioactive flavonoids. In this opportunity, we tested the neuroprotective potential of three prenylated flavanones isolated from Dalea species in a new in vitro pre-clinical AD model previously developed by us. Our approach consisted in exposing neural cells to conditioned media (3xTg-AD ACM) from neurotoxic astrocytes derived from hippocampi and cortices of old 3xTg-AD mice, mimicking a local neurodegenerative microenvironment. Flavanone 1 and 3 showed a neuroprotective effect against 3xTg-AD ACM, being 1 more active than 3. The structural requirements to afford neuroprotective activity in this model are a 5'-dimethylallyl and 4'-hydroxy at the B ring. In order to search the mechanistic performance of the most active flavanone, we focus on the flavonoid-mediated regulation of GSK-3ß-mediated tau phosphorylation previously reported. Flavanone 1 treatment decreased the rise of hyperphosphorylated tau protein neuronal levels induced after 3xTg-AD ACM exposure and inhibited the activity of GSK-3ß. Finally, direct exposure of these neurotoxic 3xTg-AD astrocytes to flavanone 1 resulted in toxicity to these cells and reduced the neurotoxicity of 3xTg-AD ACM as well. Our results allow us to present compound 1 as a natural prenylated flavanone that could be used as a precursor to development and design of future drug therapies for AD.


Assuntos
Doença de Alzheimer , Flavanonas , Fármacos Neuroprotetores , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Transgênicos , Proteínas tau/metabolismo , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Modelos Animais de Doenças , Fosforilação , Peptídeos beta-Amiloides/metabolismo
7.
Urologiia ; (1): 162-167, 2024 Mar.
Artigo em Russo | MEDLINE | ID: mdl-38650422

RESUMO

Currently, the significance of the chronic prostatitis (CP) is undoubted. Oxidative stress is considered as one of the standard mechanisms of cellular damage that is associated with inflammatory diseases such as CP. When choosing the combination therapy for this group of patients, a correction of oxidative stress is pathogenetically justified. Literature data about the pathogenetic feasibility and prospects of using a biologically active complex containing flavonoids and carotenoids quercetin, lycopene and naringin as part of the combination treatment of patients with CP are presented in the article. Considering the various effects of the biologically active complex Querceprost, containing quercetin, lycopene and naringin, among which antioxidant, anti-inflammatory, antimicrobial and immunomodulatory are of greatest importance, as well as taking into account the synergistic effect of flavonoids and carotenoids, we suggest that Querceprost is promising component of combination treatment of patients with CP.


Assuntos
Antioxidantes , Prostatite , Masculino , Humanos , Prostatite/tratamento farmacológico , Antioxidantes/administração & dosagem , Antioxidantes/uso terapêutico , Doença Crônica , Quimioterapia Combinada , Quercetina/administração & dosagem , Quercetina/farmacologia , Quercetina/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Carotenoides/administração & dosagem , Carotenoides/uso terapêutico , Licopeno/administração & dosagem , Licopeno/farmacologia , Licopeno/uso terapêutico , Flavanonas/administração & dosagem , Flavanonas/farmacologia , Flavanonas/uso terapêutico
8.
Food Chem ; 448: 139182, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569413

RESUMO

Amylosucrase (ASase) efficiently biosynthesizes α-glucoside using flavonoids as acceptor molecules and sucrose as a donor molecule. Here, ASase from Deinococcus wulumuqiensis (DwAS) biosynthesized more naringenin α-glucoside (NαG) with sucrose and naringenin as donor and acceptor molecules, respectively, than other ASases from Deinococcus sp. The biotransformation rate of DwAS to NαG was 21.3% compared to 7.1-16.2% for other ASases. Docking simulations showed that the active site of DwAS was more accessible to naringenin than those of others. The 217th valine in DwAS corresponded to the 221st isoleucine in Deinococcus geothermalis AS (DgAS), and the isoleucine possibly prevented naringenin from accessing the active site. The DwAS-V217I mutant had a significantly lower biosynthetic rate of NαG than DwAS. The kcat/Km value of DwAS with naringenin as the donor was significantly higher than that of DgAS and DwAS-V217I. In addition, NαG inhibited human intestinal α-glucosidase more efficiently than naringenin.


Assuntos
Proteínas de Bactérias , Biotransformação , Deinococcus , Flavanonas , Glucosídeos , Glucosiltransferases , Inibidores de Glicosídeo Hidrolases , Flavanonas/metabolismo , Flavanonas/química , Deinococcus/enzimologia , Deinococcus/metabolismo , Deinococcus/química , Deinococcus/genética , Glucosiltransferases/metabolismo , Glucosiltransferases/química , Glucosiltransferases/genética , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Glucosídeos/metabolismo , Glucosídeos/química , Simulação de Acoplamento Molecular , Cinética , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química
9.
Cell Biochem Funct ; 42(3): e4011, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583080

RESUMO

Colorectal cancer (CRC) is a common and highly metastatic cancer affecting people worldwide. Drug resistance and unwanted side effects are some of the limitations of current treatments for CRC. Naringenin (NAR) is a naturally occurring compound found in abundance in various citrus fruits such as oranges, grapefruits, and tomatoes. It possesses a diverse range of pharmacological and biological properties that are beneficial for human health. Numerous studies have highlighted its antioxidant, anticancer, and anti-inflammatory activities, making it a subject of interest in scientific research. This review provides a comprehensive overview of the effects of NAR on CRC. The study's findings indicated that NAR: (1) interacts with estrogen receptors, (2) regulates the expression of genes related to the p53 signaling pathway, (3) promotes apoptosis by increasing the expression of proapoptotic genes (Bax, caspase9, and p53) and downregulation of the antiapoptotic gene Bcl2, (4) inhibits the activity of enzymes involved in cell survival and proliferation, (5) decreases cyclin D1 levels, (6) reduces the expression of cyclin-dependent kinases (Cdk4, Cdk6, and Cdk7) and antiapoptotic genes (Bcl2, x-IAP, and c-IAP-2) in CRC cells. In vitro CDK2 binding assay was also performed, showing that the NAR derivatives had better inhibitory activities on CDK2 than NAR. Based on the findings of this study, NAR is a potential therapeutic agent for CRC. Additional pharmacology and pharmacokinetics studies are required to fully elucidate the mechanisms of action of NAR and establish the most suitable dose for subsequent clinical investigations.


Assuntos
Neoplasias Colorretais , Flavanonas , Proteína Supressora de Tumor p53 , Humanos , Regulação para Baixo , Neoplasias Colorretais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2 , Apoptose , Proliferação de Células
10.
Endocr Res ; 49(2): 106-116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597376

RESUMO

BACKGROUND: Phytoestrogens have been praised for their beneficial health effects, whereas synthetic xenoestrogens have been connected to ailments. AIMS: To ascertain whether the toxicities of natural and synthetic estrogens differ, we examined the potent phytoestrogen 8-prenylnaringenin (8-PN), the common synthetic xenoestrogen tartrazine, and the physiological estrogen 17ß-estradiol (E2). METHODS: These three compounds were tested for cytotoxicity, cell proliferation and genotoxicity in human HepG2 and rat H4IIE hepatoma cells. RESULTS: All three estrogens elicited cytotoxicity at high concentrations in both cell lines. They also inhibited cell proliferation, with E2 being the most effective. They all tended to increase micronuclei formation. CONCLUSION: Natural estrogens were no less toxic than a synthetic one.


Assuntos
Proliferação de Células , Estradiol , Flavanonas , Tartrazina , Humanos , Animais , Ratos , Estradiol/farmacologia , Flavanonas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Tartrazina/farmacologia , Carcinoma Hepatocelular , Neoplasias Hepáticas/induzido quimicamente , Células Hep G2 , Estrogênios/farmacologia , Congêneres do Estradiol/farmacologia , Fitoestrógenos/farmacologia
11.
Int J Biol Macromol ; 264(Pt 2): 130597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437940

RESUMO

In this study, potato starch (PS)/naringenin (NAR) complex was prepared, and its properties and emulsification behavior were evaluated. The experimental results demonstrated that NAR successfully formed a complex with PS molecules through hydrogen bonds and other non-covalent interactions. The emulsifying capacity (ROV) of PS/NAR complex with 16 % composite ratio was 0.9999, which was higher than PS (ROV = 0.3329) (p < 0.05). Based on particle property analysis and molecular dynamics simulation, the mechanism of improving the emulsification performance might be the action of the benzene ring of NAR and intermolecular hydrogen bonding. In addition, the stability of the Pickering emulsions with PS/NAR complexes as emulgators was significantly improved. The emulsifying and rheological behavior of starch-based Pickering emulsions could be adjusted by changing the proportion of the complexes. Results demonstrated that the PS/NAR complexes might be a prospective stabilizer of Pickering emulsions based on starch material and might expand the use of PS in edible products.


Assuntos
Flavanonas , Solanum tuberosum , Emulsões/química , Estudos Prospectivos , Amido/química , Tamanho da Partícula
12.
Food Chem ; 447: 138942, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38484542

RESUMO

The development of a sustainable and efficient bioconversion strategy is crucial for the full-component utilization of naringin. In this study, an engineering Pichia pastoris co-culture system was developed to produce L-rhamnose and 2S/2R-naringenin. By optimizing transformation conditions, the co-culture system could completely convert naringin while fully consuming glucose. The production of 2S/2R-naringenin reached 59.5 mM with a molar conversion of 99.2%, and L-rhamnose reached 59.1 mM with a molar conversion of 98.5%. In addition, an engineering Escherichia coli co-culture system was developed to produce 2R-naringenin and kaempferol from 2S/2R-naringenin. Maximal kaempferol production reached 1050 mg/L with a corresponding molar conversion of 99.0%, and 996 mg/L 2R-naringenin was accumulated. Finally, a total of 17.4 g 2R-naringenin, 18.0 g kaempferol, and 26.1 g L-rhamnose were prepared from 100 g naringin. Thus, this study provides a novel strategy for the production of value-added compounds from naringin with an environmentally safe process.


Assuntos
Flavanonas , Ramnose , Quempferóis
13.
J Agric Food Chem ; 72(13): 7033-7042, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507725

RESUMO

Asthma is recognized as a chronic respiratory illness characterized by airway inflammation and airway hyperresponsiveness. Wogonoside, a flavonoid glycoside, is reported to significantly alleviate the inflammation response and oxidative stress. Herein, this study aimed to investigate the therapeutic effect and underlying mechanism of wogonoside on airway inflammation and mucus hypersecretion in a murine asthma model and in human bronchial epithelial cells (16HBE). BALB/c mice were sensitized and challenged with ovalbumin (OVA). Pulmonary function and the number of cells in the bronchoalveolar lavage fluid (BALF) were examined. Pathological changes in lung tissue in each group were evaluated via hematoxylin and eosin and periodic acid-Schiff staining, and changes in levels of cytokines in BALF and of immunoglobulin E in serum were determined via an enzyme-linked immunosorbent assay. The expression of relevant genes in lung tissue was analyzed via real-time PCR. Western blotting and immunofluorescence were employed to detect the expression of relevant proteins in lung tissue and 16HBE cells. Treatment with 10 and 20 mg/kg wogonoside significantly attenuated the OVA-induced increase of inflammatory cell infiltration, mucus secretion, and goblet cell percentage and improved pulmonary function. Wogonoside treatment reduced the level of T-helper 2 cytokines including interleukin (IL)-4, IL-5, and IL-13 in BALF and of IgE in serum and decreased the mRNA levels of cytokines (IL-4, IL-5, IL-6, IL-13, and IL-1ß and tumor necrosis factor-α), chemokines (CCL-2, CCL-11, and CCL-24), and mucoproteins (MUC5AC, MUC5B, and GOB5) in lung tissues. The expression of MUC5AC and the phosphorylation of STAT6 and NF-κB p65 in lung tissues and 16HBE cells were significantly downregulated after wogonoside treatment. Thus, wogonoside treatment may effectively decrease airway inflammation, airway remodeling, and mucus hypersecretion via blocking NF-κB/STAT6 activation.


Assuntos
Asma , Flavanonas , Glucosídeos , NF-kappa B , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Ovalbumina/efeitos adversos , Ovalbumina/metabolismo , Interleucina-13 , Interleucina-5/metabolismo , Interleucina-5/farmacologia , Interleucina-5/uso terapêutico , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/genética , Pulmão/metabolismo , Inflamação/metabolismo , Muco/metabolismo , Citocinas/genética , Citocinas/metabolismo , Líquido da Lavagem Broncoalveolar , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Fator de Transcrição STAT6/farmacologia
14.
J Agric Food Chem ; 72(13): 7130-7139, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38516841

RESUMO

Macrophage inflammation and oxidative stress promote atherosclerosis progression. Naringenin is a naturally occurring flavonoid with antiatherosclerotic properties. Here, we elucidated the effects of naringenin on monocyte/macrophage endothelial infiltration and vascular inflammation. We found naringenin inhibited oxidized low-density lipoprotein (oxLDL)-induced pro-inflammatory cytokines such as IL-1ß, IL-6, and TNF-α toward an M2 macrophage phenotype and inhibited oxLDL-induced TLR4 (Toll-like receptor 4) membrane translocation and downstream NF-κB transcriptional activity. Results from flow cytometric analysis showed that naringenin reduced monocyte/macrophage infiltration in the aorta of high-fat-diet-treated ApoE-deficient mice. The aortic cytokine levels were also inhibited in naringenin-treated mice. Further, we found that naringenin reduced lipid raft clustering and acid sphingomyelinase (ASMase) membrane gathering and inhibited the TLR4 and NADPH oxidase subunit p47phox membrane recruitment, which reduced the inflammatory response. Recombinant ASMase treatment or overexpression of ASMase abolished the naringenin function and activated macrophage and vascular inflammation. We conclude that naringenin inhibits ASMase-mediated lipid raft redox signaling to attenuate macrophage activation and vascular inflammation.


Assuntos
Flavanonas , Esfingomielina Fosfodiesterase , Receptor 4 Toll-Like , Camundongos , Animais , Receptor 4 Toll-Like/genética , Esfingomielina Fosfodiesterase/genética , Inflamação/tratamento farmacológico , Inflamação/genética , NF-kappa B , Citocinas , NADPH Oxidases/genética , Microdomínios da Membrana
15.
Int J Biol Macromol ; 264(Pt 1): 130500, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428770

RESUMO

BACKGROUND: Endotoxemia is a severe and dangerous clinical syndrome that results in elevated morbidity, especially in intensive care units. Neonates are particularly susceptible to endotoxemia due to their immature immune systems. There are few effective treatments for neonatal endotoxemia. One group of compounds with potential in the treatment of neonatal inflammatory diseases such as endotoxemia is the flavonoids, mainly due to their antioxidant and anti-inflammatory properties. Among these, naringenin (NGN) is a citrus flavonoid which has already been reported to have anti-inflammatory, antioxidant, anti-nociceptive and anti-cancer effects. Unfortunately, its clinical application is limited by its low solubility and bioavailability. However, cyclodextrins (CDs) have been widely used to improve the solubility of nonpolar drugs and enhance the bioavailability of these natural products. OBJECTIVE: We, therefore, aimed to investigate the effects of NGN non-complexed and complexed with hydroxypropyl-ß-cyclodextrin (HPßCD) on neonatal endotoxemia injuries in a rodent model and describe the probable molecular mechanisms involved in NGN activities. METHOD: We used exposure to a bacterial lipopolysaccharide (LPS) to induce neonatal endotoxemia in the mice. RESULTS: It was found that NGN (100 mg/kg i.p.) exposure during the neonatal period reduced leukocyte migration and decreased pro-inflammatory cytokine (TNF-α, IL-1ß and IL-6) levels in the lungs, heart, kidneys or cerebral cortex. In addition, NGN upregulated IL-10 production in the lungs and kidneys of neonate mice. The administration of NGN also enhanced antioxidant enzyme catalase and SOD activity, reduced lipid peroxidation and protein carbonylation and increased the reduced sulfhydryl groups in an organ-dependent manner, attenuating the oxidative damage caused by LPS exposure. NGN decreased ERK1/2, p38MAPK and COX-2 activation in the lungs of neonate mice. Moreover, NGN complexed with HPßCD was able to increase the animal survival rate. CONCLUSION: NGN attenuated inflammatory and oxidative damage in the lungs, heart and kidneys caused by neonatal endotoxemia through the MAPK signaling pathways regulation. Our results show that NGN has beneficial effects against neonatal endotoxemia and could be useful in the treatment of neonatal inflammatory injuries.


Assuntos
Citrus , Endotoxemia , Flavanonas , Camundongos , Animais , Flavonoides/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Endotoxemia/induzido quimicamente , Endotoxemia/tratamento farmacológico , Lipopolissacarídeos/uso terapêutico , Anti-Inflamatórios/farmacologia
16.
Int J Biochem Cell Biol ; 169: 106557, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460905

RESUMO

There is growing evidence of an elevated risk of lung cancer in patients with rheumatoid arthritis. The poor prognosis of rheumatoid arthritis-associated lung cancer and the lack of therapeutic options pose an even greater challenge to the clinical management of patients. This study aimed to identify potential molecular targets associated with the progression of rheumatoid arthritis-associated lung cancer and examine the efficacy of naringenin nanoparticles targeting cyclin B1. Mendelian randomizatio analysis revealed that rheumatoid arthritis has a positive correlation with the risk of lung cancer. Cyclin B1 was significantly upregulated in patients with rheumatoid arthritis-associated lung cancer and was significantly overexpressed in synovial tissue fibroblasts. Furthermore, the overexpression of cyclin B1 in rheumatoid arthritis fibroblast-like synoviocytes, which promotes their proliferation and fibroblast-to-myofibroblast transition, can significantly contribute to the growth and infiltration of lung cancer cells. Importantly, our prepared naringenin nanoparticles targeting cyclin B1 effectively attenuated proliferation and fibroblast-to-myofibroblast transition by blocking cells at the G2/M phase. In vivo experiments, naringenin nanoparticles targeting cyclin B1 significantly alleviated the development of collagen-induced arthritis and lung orthotopic tumors. Collectively, our results reveal that naringenin nanoparticles targeting cyclin B1 can suppress the progression of rheumatoid arthritis-associated lung cancer by inhibiting fibroblast-to-myofibroblast transition. These findings provide new insights into the treatment of rheumatoid arthritis-associated lung cancer therapy.


Assuntos
Artrite Reumatoide , Flavanonas , Neoplasias Pulmonares , Humanos , Ciclina B1/genética , Ciclina B1/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Miofibroblastos/patologia , Artrite Reumatoide/complicações , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Fibroblastos/patologia , Proliferação de Células , Células Cultivadas
17.
Pharmacol Res ; 202: 107124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428704

RESUMO

Metabolic syndrome has become major health problems in recent decades, and natural compounds receive considerable attention in the management of metabolic syndrome. Among them, naringin is abundant in citrus fruits and tomatoes. Many studies have investigated the therapeutic effects of naringin in metabolic syndrome. This review discusses in vitro and in vivo studies on naringin and implications for clinical trials on metabolic syndrome such as diabetes mellitus, obesity, nonalcoholic fatty liver disease, dyslipidemia, and hypertension over the past decades, overviews the molecular mechanisms by which naringin targets metabolic syndrome, and analyzes possible correlations between the different mechanisms. This review provides a theoretical basis for the further application of naringin in the treatment of metabolic syndrome.


Assuntos
Flavanonas , Síndrome Metabólica , Hepatopatia Gordurosa não Alcoólica , Humanos , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Obesidade/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico
18.
J Nanobiotechnology ; 22(1): 122, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504208

RESUMO

Endocrine therapy is standard for hormone receptor-positive (HR+) breast cancer treatment. However, current strategies targeting estrogen signaling pay little attention to estradiol metabolism in the liver and is usually challenged by treatment failure. In a previous study, we demonstrated that the natural compound naringenin (NAR) inhibited HR+ breast cancer growth by activating estrogen sulfotransferase (EST) expression in the liver. Nevertheless, the poor water solubility, low bio-barrier permeability, and non-specific distribution limited its clinical application, particularly for oral administration. Here, a novel nano endocrine drug NAR-cell penetrating peptide-galactose nanoparticles (NCG) is reported. We demonstrated that NCG presented specific liver targeting and increased intestinal barrier permeability in both cell and zebrafish xenotransplantation models. Furthermore, NCG showed liver targeting and enterohepatic circulation in mouse breast cancer xenografts following oral administration. Notably, the cancer inhibition efficacy of NCG was superior to that of both NAR and the positive control tamoxifen, and was accompanied by increased hepatic EST expression and reduced estradiol levels in the liver, blood, and tumor tissue. Moreover, few side effects were observed after NCG treatment. Our findings reveal NCG as a promising candidate for endocrine therapy and highlight hepatic EST targeting as a novel therapeutic strategy for HR+ breast cancer.


Assuntos
Neoplasias da Mama , Flavanonas , Nanopartículas , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/patologia , Peixe-Zebra/metabolismo , Receptores de Estrogênio/metabolismo , Estrogênios/metabolismo , Estrogênios/uso terapêutico , Tamoxifeno/farmacologia , Estradiol/farmacologia , Fígado/metabolismo
19.
Biochem Biophys Res Commun ; 705: 149670, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38442444

RESUMO

Cholestasis is characterized by impaired bile secretion and flow, leading to the accumulation of toxic bile acids in the liver, further causing inflammatory reaction, fibrosis, and ultimately liver transplantation. Although first-line clinical agents such as Ursodeoxycholic acid (UDCA) and Obeticholic acid (OCA) are available, serious side effects still exist. Therefore, pharmacologic treatment of cholestatic liver disease remains challenging. Here, we used a murine model of cholestasis treated with or without intraperitoneal injection of baicalein and found that baicalein could attenuate 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced inflammatory response, ductular reaction, liver fibrosis, and bile acid metabolism disorders. Furthermore, the therapeutic effect of baicalein was hampered in the presence of Guggulsterone (GS), an Farnesoid X receptor (FXR) antagonist. These results indicated that baicalein alleviated DDC diet-induced cholestatic liver injury in an FXR-dependent manner.


Assuntos
Colestase Intra-Hepática , Colestase , Flavanonas , Animais , Camundongos , Colestase Intra-Hepática/induzido quimicamente , Colestase Intra-Hepática/tratamento farmacológico , Colestase/tratamento farmacológico , Ácidos e Sais Biliares
20.
Int J Pharm ; 654: 123964, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38430948

RESUMO

The purpose of this study was to develop a novel baicalein (BAI) loaded glycymicelle ophthalmic solution with small molecule phytochemical glycyrrhizin as nanocarriers and to explore this solution's potential as an antimicrobial agent against ocular infections. The optimized BAI glycymicelles had a high encapsulation efficiency (98.76 ±â€¯1.25 %), a small particle size (54.38 ±â€¯2.41 nm), a uniform size distribution (polydispersity index = 0.293 ±â€¯0.083), and a zeta potential of -28.3 ±â€¯1.17 mV. The BAI glycymicelle ophthalmic solution exhibited an excellent short-term storage stability. BAI glycymicelles significantly increased the apparent solubility and in vitro release capability of BAI. The BAI glycymicelle ophthalmic solution exhibited no hen's egg-chorioallantoic membrane' irritation and strong in vivo ocular tolerance in rabbits. The BAI glycymicelles noticeably enhanced the in vivo corneal permeation. The BAI glycymicelles also precipitated increased in vitro antioxidant activity and significantly improved in vitro antipathogen activities. Various antimicrobial mechanisms, including the destruction of the bacterial cell wall, damage to the bacterial cell membranes, interruptions to the biofilm structure, and the apoptosis of bacteria, were inflicted on BAI glycymicelles. These findings provided useful knowledge regarding the development of a novel ophthalmic solution and formulation of BAI.


Assuntos
Anti-Infecciosos , Flavanonas , Animais , Coelhos , Flavanonas/farmacologia , Córnea/metabolismo , Anti-Infecciosos/farmacologia , Soluções Oftálmicas/química , Administração Oftálmica , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...